Съемка с беспилотных летательных аппаратов. Топографическая съёмка с использованием бпла

Если у вас стоит задача по оперативному картографированию, съемке газопроводов, нефтепроводов или ЛЭП для определения их состояния - наши специалисты быстро и в оговоренный срок выполнят для вас эту работу в любом месте Российской Федерации. На наших беспилотных самолетах установлена высококачественная зеркальная фотокамера с разрешением 24 мегапикселей, тепловизор с разрешением 640*480 пикселей и видеокамера с HD разрешением с десятикратным зумом, которые позволяют выполнять плановую и перспективную аэрофотосъемку. Для выполнения работ наша организация заключает с Заказчиком договор на оказание услуг по аэрофотосъемке. Для работ высокой точности на БПЛА установлен двухчастотный GPS/ГЛОНАСС - приёмник, использующий большинство передовых GPS/ГЛОНАСС - технологий, и способный следить за спутниками даже при затрудненных условиях окружающей среды.

И, конечно же, мы готовы обработать полученные материалы для подготовки фотоплана, фотосхемы или выполнить дешифрование.

Пример ортофотоплана площадью 14км*14км, снято с высоты 1.5 км с БПЛА Supercam-350 за один день

Сущность аэрофотосъемки

Аэрофотосъемка местности - это комплекс работ, включающий различные процессы от фотографирования земной поверхности с летящего самолета до получения аэрофотоснимков, фотосхем или фотопланов снятой местности. В него входят:
1. подготовительные мероприятия, заключающиеся в изучении местности, которая подлежит фотографированию, подготовке карт, проектировании маршрутов полетов самолета и в производстве расчета элементов аэрофотосъемки;
2. собственно летно-съемочные работы или фотографирование земной поверхности при помощи аэрофотоаппаратов;
3. фотолабораторные работы по проявлению снятой пленки и изготовлению позитивов;
4. геодезические работы по созданию на местности геодезической основы, которая необходима для исправления искажений аэроснимков, возникших в процессе аэрофотосъемки, привязки аэроснимков и для составления фотосхем и фотопланов;
5. фотограмметрические работы, которые проводятся как в полевом, так и камеральном периодах, и связаны с обработкой аэрофотоснимков для составления планов и карт снятой местности.

Все эти процессы тесно связаны один с другим и отчасти взаимно перекрываются. Аэрофотосъемка каждого объекта должна выполняться одной и той же организацией от начала до сдачи окончательной продукции. В результате проведения этих работ изготовляются контактные отпечатки, репродукции с накидного монтажа аэрофотоснимков, фотосхемы или фотопланы, составленные по данным геодезической основы. Все эти аэрофотосъемочные материалы используются в дальнейшем для решения целого ряда вопросов в области лесного хозяйства и лесной промышленности.

История аэрофотосъемки местности

Беспилотная аэрофотосъемка, как, впрочем, и сама история, развивается по спирали: в 1858 выполняя полет на воздушном шаре над Парижем, Гаспар Феликс Турнашон сделал первый в мире аэрофотоснимок, а уже в 1887 году французский фотограф Артур Батут разработал и выполнил первую беспилотную аэрофотосъёмку с помощью воздушного змея. Затем в аэрофотосъемке бурно развились идеи беспилотной авиации, что вылилось в запатентованный «Способ и средства для фотографирования пейзажей сверху» с помощью почтовых голубей немецкого аптекаря Юлиуса Нойброннера. Причем этот метод действительно широко применялся во время Первой Мировой войны. И только 24 апреля 1909 г. случилось "Первое использование кинокамеры, вмонтированной в летательный аппарат тяжелее воздуха" при съёмках короткометражного немого киноролика «Уилбур Райт и его самолёт». В настоящее время аэрофотосъемка делает очередной виток своей истории, становясь опять беспилотной.

Плановая и перспективная беспилотная аэрофотосъемка местности

При плановой съемке камера направлена вертикально вниз, под прямым углом к поверхности земли. На снимках мы видим плоскую картину (ортогональная проекция), напоминающую изображение на географических картах. При этом виде аэрофотосъемки мы можем определить взаиморасположение объектов на плоскости без учета их высот. При фотографировании объектов недвижимости мы можем видеть те части сооружений, которые направлены вверх (крыши). Такой вид съемки в основном используется для создания фотопланов. Аналогичный продукт может быть получен с использованием спутниковой и традиционной аэрофотосъемки.

При перспективной (обзорной) съемке камера направлена под углом к горизонту. Такой вид съемки невозможен для спутников и традиционной "большой авиации". При перспективной аэрофотосъемке на снимках мы видим объемную картину (аксонометрическая проекция): не только крыши сооружений, но и боковые поверхности (стены). Таким образом, мы можем судить не только о взаиморасположении объектов на плоскости, но и об их форме. Кроме того, при перспективной съемке мы можем определить высоту объектов относительно друг друга. При определенных углах перспективной съемки в кадре может присутствовать линия горизонта. В этом случае мы получаем возможность увидеть на одном снимке то, как участок или сооружение вписаны в окружающий ландшафт и их взаиморасположение с отдаленными объектами (дальние объекты, леса, водоемы, населенные пункты). На основе нескольких перспективных снимков, сделанных с поворотом камеры вокруг вертикальной оси, могут быть собраны панорамные снимки, включая полные 360-градусные круговые панорамы. Создание аэрофотопанорам возможно только при использовании специально оборудованного дистанционно управляемого вертолета, способного надолго зависать на определенной высоте, пока проводится съемка смежных кадров.

Этапы аэрофотосъемочных работ

Опыт, накопленный в области применения аэрометодов при изысканиях, показывает их исключительную эффективность по сравнению с традиционными методами сбора информации как в части значительного снижения трудоёмкости и сокращения сроков изысканий, так и в части широты охвата различных видов информации, необходимой для проектирования. Аэроизыскания выполняют в три этапа: подготовительный, полевой и камеральный.

В подготовительный период осуществляется сбор имеющейся на район изысканий топографической информации и материалов аэросъёмок прошлых лет, на основании которых обосновывают полосу варьирования конкурентоспособных вариантов трассы и составляют проект производства аэросъёмочных, полевых и камеральных аэрофотогеодезических работ.

В полевой период производят: наземные геодезические работы по созданию планово-высотного обоснования аэросъёмок; закрепление и маркировку точек опорной сети; различные виды аэросъёмочных работ, привязку и дешифрирование аэрофотоснимков. Важным видом аэрогеодезических изысканий является дешифрирование - выявление (обнаружение и опознавание) и раскрытие содержания (познания) различных объектов и элементов местности по их изображениям на снимках, их качественных и количественных характеристик, своеобразных свойств и особенностей.

В камеральный период выполняют полную обработку результатов геодезических измерений, фотограмметрическое сгущение геодезического съёмочного обоснования методами аналитической фототриангуляции, стереофотограмметрические работы по получению информации о рельефе и изготовлению топографических планов и цифровых моделей местности (ЦММ) в единой системе координат.

Оборудование для беспилотной аэрофотосъемки

Как правило, современные операторы беспилотных самолетов используют в своей ежедневной работе небольшой, размахом до 3 м, беспилотный самолет с обычной, бытовой или студийной, фотокамерой на основе ПЗС матрицы. Наиболее популярны "мыльницы" Samsung, Sony, Pentax. Фотографии с таких устройств годятся в целом для составления планов и схем. Аэрофотоснимки значительно более высокого качества дают зеркальные фотоаппараты - здесь лидерами и стандартом являются Canon 550D и его старший товарищ Canon 5D Mark II. При этом, конечно же, находят применение и большие многообъективные системы.

Летно-съемочные работы, выполняемые фотоаппаратом на основе матричного сенсора (ПЗС - матрица), больше напоминают традиционный аналоговый метод аэрофотосъёмки, когда все элементы матрицы одновременно экспонируются. В этом методе внутрипиксельная геометрия известна и строго определена. В матричной технологии в настоящее время проблема в том, что большие матричные решётки сложны в изготовлении. Поэтому комбинируют: делают большие по площади решётки из нескольких маленьких по площади. Например, из четырёх. Четырех-линзовый объектив формирует четыре отдельных изображения, которые трансформируют в центральную проекцию и автоматически стыкуют. Такие снимки обрабатываются по существующим программам аналитической обработки.

Второй главной частью, причем не менее важной, является система определения положения БПЛА/фотокамеры в пространстве. В простейшем случае это обычный малогабаритный GPS приемник с антенной, например Ublox. В настоящее время Российские производители комплексов с БЛА практически повсеместно переходят на приемники сигналов систем спутникового позиционирования совмещенного типа GPS/Глонасс. К сожалению, и они не могут обеспечить требуемую точность. Поэтому в более дорогих и серьезных аппаратах устанавливается дополнительный высокоточный приемник GPS, который позволяет при постобработке сырых данных определить координаты центра снимка с точностью до 5-10 см.

А если этот приемник использовать вместе с наземными базовыми GPS станциями, то точность привязки кадров к координатам вырастет до ошеломляющих!!! 5 см. Для выполнения съемки создаются базовые GPS-станции, данные которых используются для вычисления дифференциальных поправок при определении траектории летательного аппарата. Для определения траектории летательного аппарата и уточнения угловых данных инерциальной системы применяется метод совместной обработки GPS-данных и данных инерциальной системы. Привязка снимков к координатам, как правило, выполняется при помощи программ, написанных специально под конкретный тип приемника и БЛА. Применение такого метода расчета повышает точность определения как угловых параметров, так и местоположения.

Точность GPS/Глонасс навигации и особенности систем автоматического управления БПЛА позволяют достигать следующих параметров при полете по маршруту аэрофотосъемки:

Поперечное смещение от оси маршрута — ± 10 м;
удержание БПЛА на заданной высоте — ± 15 м;
расстояние от запроектированного центра фотографирования до точки срабатывания затвора фотоаппарата — ± 5 м;
изменение угла крена БПЛА на маршруте между двумя снимками — 10°;
изменение угла тангажа БПЛА на маршруте между двумя снимками — 6°.

Технология

Результатом цифровой аэрофотосъёмки местности являются цифровые аэрофотоснимки, а также зафиксированные в полете элементы внешнего ориентирования (линейные - Xs, Ys, Zs - координаты центра фотографирования; угловые - α, β, γ - ориентирование камеры относительно осей координат).

В соответствии с законами центрального проектирования, по которым строится изображение местности, аэронегатив (аэроснимок) содержит ряд искажений, величины которых определяются углом наклона оптической оси аэрофотоаппарата и колебанием рельефа местности. Устранение этих искажений осуществляется в процессе их компьютерной фотограмметрической обработки, и в частности - фотографического или цифрового преобразования, называемого трансформированием. В связи с этим использование аэроснимков без их предварительного трансформирования для картографического (топографического) обеспечения выполняемых работ, в том числе в качестве основы ГИС, ограничивается влиянием указанных искажений.

Показания специальных приборов и оборудования, зафиксированные в процессе аэрофотосъемки, обеспечивают стабилизацию съемочной камеры в полете или последующее определение по ним пространственного положения аэроснимков в абсолютной или относительной системе координат с целью последующего их использования при выполнении фотограмметрических работ и преобразовании аэроснимков в планы и карты. К числу таких приборов относят гироскопы, системы глобального позиционирования, оборудование для определения высоты полета, превышений между центрами фотографирования, а также аэронавигационные системы и др. Наличие указанных данных во многом определяет технологию камеральной обработки материалов аэрофотосъемки, существенно влияет на оперативность, точность фотограмметрических построений и объемы полевых работ по их обеспечению.

Прокладка маршрута

Аэрофотосъемка бывает площадная и линейная, в площадной съемке кроме продольного перекрытия снимков еще необходимо соблюдать и поперечное перекрытие. Исходными параметрами фотосъемки при помощи беспилотника являются требуемое разрешение снимка, разрешение аэрофотоаппарата, угол зрения объектива камеры, величина перекрытия кадров. Из этих данных рассчитывается высота полета, скорость беспилотника и частота срабатывания затвора фотокамеры.

Полет и фотографирование

Во время полета беспилотник в автоматическом режиме рассчитывает свою скорость и частоту срабатывания затвора (скорость кадров) так, чтобы обеспечить заданное перекрытие кадров. Перекрытие снимков с БПЛА отвечает обычным требованиям для аэрофотосъемки и составляет, как правило, 60% кадра. Снимки с БПЛА перекрываются на 60% в продольном перекрытии и на 30% в поперечном перекрытии.

Оперативный просмотр результатов аэрофотосъемки местности. В результате полета формируются набор фотографий и данные телеметрии, которые включают в себя координаты центра фотографирования, а также углы крена, тангажа и курса.

Этапы обработки аэрофотоснимков в фотограмметрическом ПО

1) Создание проекта (имя, система координат, диапазон высот объекта, размещение в системе ресурсов);

3) Импорт ориентирования из метаданных;

4) Внутренне ориентирование (Создание паспорта камеры);

5) Импорт внешнего ориентирования;

6) Формирование накидного монтажа по внешнему ориентированию;

7) Измерение сети (Автомат триангуляции БПЛА, автомат связующих точек с заданными параметрами, измерение опорного обоснования), контроль;

8) Уравнивание сети (вычисление систематики, самокалибровка, контрольные измерения), контроль;

9) Создание ЦМР (облако точек, TIN, структурные линии, матрица высот, горизонтали), контроль;

10) Трансформирование по изображениям, контроль;

11) Работа с ортофотоснимками (порезы, выравнивание яркости, нарезка на листы), контроль;

12) (Опционально) Стереовекторизация для создания 3D карт и 3D моделей;

13) (Опционально) Создание 2D карт.

Существует три вида обработки данных: аффинное преобразование кадров для создания ортофотосхемы равнинных территорий, полное ортотрансформирование кадров для создания ортофотосхемы территорий с выраженным рельефом, полное ортотрансформирование кадров для создания ортофотоплана с выполнением геодезических требований по масштабу.

Аффинное преобразование кадров для создания ортофотосхемы равнинных территорий

Программой определяются общие точки (от 50 до 1200) между каждой парой снимков. После этого решается уравнение, включающее в себя информацию по всем снимкам, для поиска минимума СКО (среднеквадратичного отклонения) между всеми векторами, соединяющими общие точки. Проще говоря, между каждой парой точек натягивается резинка, и все кадры выстраиваются так, чтобы общее натяжение резинок было минимальным. При этом кадр может преобразовываться только афинно, т.е. любая прямая отображается только в прямую.

Ортофотосхемы с беспилотного самолета

Программой определяются общие точки (от 50 до 1200) между каждой парой снимков. После этого решается полное фотограмметрическое уравнение с определением рельефа местности с точностью до 10 пикселей. При этом уточняются координаты центра фотографирования и параметры ориентирования (крен, тангаж, курс).

В соответствии с вычисленными данными проводится ортотрансформирование всех кадров и проецирование результата на плоскость. Привязка к реальным данным проводится по существующим в общедоступных картографических ресурсах данным. Например, по GoogleEarth. Точность этих данных на территории России составляет порядка 6 метров.

Ортофотопланы с БПЛА

Программой определяются общие точки (от 100 до 3000) между каждой парой снимков. После этого решается полное фотограмметрическое уравнение с определением рельефа местности с точностью до 2 пикселей. При этом уточняются координаты центра фотографирования и параметры ориентирования (крен, тангаж, курс) с высокой точностью.

В соответствии с вычисленными данными проводится ортотрансформирование всех кадров и проецирование результата на плоскость. Привязка к реальным данным проводится по результатам наземного обоснования, включающего в себя не менее одной точки на каждые 10 кадров или не менее 10 точек на один ортофотоплан. Половина этих точек используется для привязки, вторая половина для подтверждения требований точности. Точность формирования рельефа при этом соответствует требованиям соответствующего масштаба.

Результатом работы являются файлы формата geotiff с точностью, соответствующей заданному масштабу. Формат geotiff включает в себя два файла - ортотрансформированную аэрофотосъемку и цифровую модель рельефа (DEM - digital elevation model), которые можно открыть в любой ГИС программе, например ArcGis или GlobalMapper. По включенной DEM можно сформировать изолинии рельефа с любым перепадом высот.

3D модель рельефа местности

По результатам аэрофотосъемки выполняется восстановление рельефа по фотографиям с БПЛА. Совместно с DEM возможно выдать рельеф по изолиниям с требуемой точностью. Стандартный формат - векторные линии формата ArcGis, которые импортируются в любую картографическую систему.

Специалисты компании могут выдать результат практически в любом требуемом формате. Для этого нужно указать программу, в которой предполагается использовать результат.

Также возможно осуществить переход в местную систему координат из WGS. При выполнении наземного обоснования мы можем выполнить съемку координат на опознаках ГГС (государственной геодезической сети), тогда работа может сразу выполняться в местной системе координат без преобразования и соответствующей потери точности.

УДК: 528.71 А.С. Костюк

Западно-Сибирскй филиал «Госземкадастрсъемка» - ВИСХАГИ, Омск

РАСЧЕТ ПАРАМЕТРОВ И ОЦЕНКА КАЧЕСТВА АЭРОФОТОСЪЕМКИ С БПЛА

В статье рассмотрены особенности расчета параметров аэрофотосъемки с малых беспилотных летательных аппаратов (БПЛА). Изложен способ оперативной оценки качества аэрофотосъемки с БПЛА.

West-Siberian branch «Goszemkadastrsyomka» - VISHAGI 4 Prospect Mira, Omsk, 644080, Russian Federation

CALCULATION OF THE PARAMETERS AND EVALUATION OF QUALITY WITH UAV AERIAL PHOTOGRAPHY

The article describes the features of calculation of parameters from aerial surveys of small unmanned aerial vehicles (UAVs). Described method for rapid assessment of the quality of aerial photography from unmanned aircraft.

Проведение работ по инвентаризации земель и объектов недвижимости, подготовка документов для постановки на государственный кадастровый учёт и государственная регистрация прав подразумевает выполнение комплекса картографо-геодезических, землеустроительных и кадастровых работ. Для поддержания информации на современном уровне необходим системный мониторинг. Для локального обновления картографического материала интенсивно используемых земель целесообразно использовать беспилотно-пилотируемые летательные аппараты. В Западно-Сибирском филиале предприятия “Госземкадастрсъемка” - ВИСХАГИ разработано несколько летательных аппаратов и все они попадают в весовую категорию до 3,5 кг.

Несмотря на всю простоту любительской съемки с БПЛА, при проведении аэрофотосъемочных работ для целей картографирования возникает ряд проблем, связанных с выбором фотокамеры, устанавливаемой на летательный аппарат, расчетом параметров аэрофотосъемки и оперативной оценке качества материалов аэрофотосъемки.

Выбор фотокамер для целей аэрофотосъемки основан на анализе следующих характеристик: разрешающей способности снимков, физическом размере матрицы, величине угла захвата, веса камеры и её стоимости. Нами была разработана методика присвоения оценочных баллов по каждой характеристике фотоаппарата. Лучшим фотоаппаратом считался фотоаппарат, набравший большую сумму балов. Было исследовано более десяти цифровых камер подходящих для установки на БПЛА из модельного ряда весовой категории до 3,5 кг.

По результатам исследования, наилучшими для целей аэрофотосъемки признаны камеры Canon IXUS-980IS, Pentax Optio-A30 и Sony DSC-W300, их основные характеристики представлены в табл. 1.

Таблица 1 Основные характеристики выбранных фотокамер

Название фотокамеры Длина матрицы, пкс Ширина матрицы, пкс Размер матрицы, " f экв 35 мм кадру, мм Вес, г

Canon IXUS-980IS 4416 3312 1/1.7 36.0 160

Sony DSC-W300 4224 3168 1/1.7 35.0 156

Pentax OptioA30 3648 2736 1/1.8 38.0 150

В настоящее время на беспилотных летательных аппаратах ЗападноСибирского филиала “Госземкадастрсъемка” - ВИСХАГИ установлена фотокамера Pentax Optio-A30. Камера хорошо показала себя во время производственной и экспериментальной аэрофотосъемки. Постоянно развивающаяся технология аэрофотосъемки с БПЛА требует приобретения новых фотокамер и совершенствования методики их выбора.

Расчет параметров аэрофотосъемки изложен в соответствующих нормативных документах. Аэрофотосъемка с малых беспилотных летательных аппаратов имеет ряд особенностей. Превышение допустимых углов наклона снимков, несоблюдение прямолинейности траектории полета, для обеспечения необходимого перекрытия между снимками высокая частота фотографирования и как следствие избыток кадров. Нами была разработана методика расчета следующих параметров аэрофотосъемки с БПЛА: высоты фотографирования, расстояния между маршрутами и между центрами фотографирования на маршруте.

Высота аэрофотосъемки зависит от масштаба создаваемого фотоплана. Величина крайнего пикселя снимка на местности не должна превышать 0.07 мм в масштабе создаваемого фотоплана. Например при создании фотоплана

масштаба 1: 2000 величина пикселя на местности d не должна превышать 0.14 м. Расчет разрешающей способности снимка следует производить для пикселей наиболее удаленных от центра кадра. Схема связи размера крайнего пикселя снимка с местностью показана на рисунке.

На рисунке: f - фокусное расстояние камеры в эквиваленте для 35 мм кадра;

L - длина половины диагонали матрицы, для 35 мм кадра она составит 21.6 мм;

H - высота фотографирования во время АФС;

Рис. 1. Связь размера пикселя снимка с местностью

D - длина половины диагонали снимка на местности.

Из рисунка следует:

d ■ cos(у-Р)

S = ; ; (1) sin у

Hmx = S ■ cos Р; (2)

Расчет максимально допустимой высоты аэрофотосъемки выполняется по формуле (2), где угол в зависит от индивидуальных параметров используемой фотокамеры и может быть рассчитан исходя из величины фокусного расстояния эквивалентного 35 мм кадру.

В зависимости от точности GPS навигации и особенностей пилотирования БПЛА могут быть достигнуты следующие параметры выдерживания самолета на маршруте:

Поперечное смещение от оси маршрута ± 10 м;

Удержание БПЛА на запроектированной высоте ± 15 м;

Расстояние от запроектированного центра фотографирования до точки срабатывания затвора фотоаппарата ± 5 м;

Изменение угла крена БПЛА на маршруте между двумя снимками

Изменение угла тангажа БПЛА на маршруте между двумя снимками

Приведенные параметры полета БПЛА были получены в результате постобработки множества материалов производственной и экспериментальной аэрофотосъемки.

Для расчета расстояния между маршрутами обеспечивающего 30 % поперечное перекрытие при идеальных условиях по формуле (3) вычисляется половина поперечного угла захвата камеры, где Ln^epen - половина ширины 35 мм пленки и составляет 12 мм:

р" = arcctg (------); (3)

Высота полета с учетом погрешности барометрического датчика рассчитывается по формуле (4):

H = H - 20 м (4)

пол max ? V /

Половина ширины захвата местности камерой вычисляется по формуле (5):

D = Hпол ■ tgP"; (5)

Расстояние между маршрутами в идеальных условиях рассчитывается по формуле (6):

где к = 0,7, для обеспечения 30 % поперечного перекрытия снимков.

Для обеспечения надежного сплошного покрытия земной поверхности снимками необходимо учесть максимальные отклонения БПЛА от запроектированного маршрута. Минимальное значение половины ширины захвата местности во время аэрофотосъемки с учетом совокупности погрешностей навигационных данных и пилотирования летательного аппарата вычисляется по формуле (7):

Рш1п = (Нпоп -15м) щ(0- 5°) -10м; (7)

Предельное отклонение между двумя маршрутами составит:

8Р = 2 (Р - Этп); (8)

Расстояние между маршрутами с учетом поперечного смешения БПЛА относительно оси маршрута, удерживания высоты полета и углов наклона камеры, вычисляется по формуле (9):

К = К - §Р ■ (9)

попереч ид? V /

По формулам (1)-(9) вычисляется высота полета БПЛА для выбранных фотоаппаратов и расстояние между маршрутами при создании фотопланов масштаба 1: 2 000. Полученные данные представлены в табл. 2.

Таблица 2 Расчет высоты фотографирования и расстояния между

маршрутами

Название фотокамеры Hmax, м ^ м м Dmin, м м o" Ô Rпопереч, м

Canon IXUS-980IS 520 500 233 106 122 112

Sony DSC-W300 484 464 223 101 116 107

Pentax 0ptio-A30 467 447 198 86 110 87

Расстояние между центрами фотографирования на маршруте рассчитывается по аналогии с расстоянием между маршрутами. По формуле (3) вычисляется половина продольного угла захвата камеры, где L - половина длины 35 мм пленки и составляет 18 мм. Расстояние между центрами фотографирования в идеальных условиях рассчитывается по формуле (6), для обеспечения 60% продольного перекрытия снимков коэффициент к будет равен 0,4. По формуле (7) вычисляется минимальное значение половины длины захвата местности во время АФС. Предельное отклонение расстояния между снимками от рассчитанного вычисляется по формуле (8). Расстояние между центрами фотографирования с учетом погрешности навигационных координат, удерживания высоты полета и углов наклона камеры, рассчитывается по формуле (10):

Результаты полученные в ходе вычисления расстояния между центрами фотографирования вдоль маршрута приведены в табл. 3.

Таблица 3 Расчет расстояния между центрами фотографирования

Название фотокамеры ^ м Dmin, м SD, м Rпрод, м

Canon IXUS-980IS 200 207 87 113

Pentax 0ptio-A30 191 197 83 108

Sony DSC-W300 169 173 78 91

По данным табл. 2 и 3 на примере фотоаппарата Сапоп 1ХШ-98018 составлена карточка параметров аэрофотосъемки с БПЛА для целей получения фотоплана масштаба 1: 2 000._________________________________

Карточка параметров АФС с БПЛА для целей картографирования

Фотокамера: Canon IXUS-980IS

Масштаб АФС: 1: 2 000

Высота полета при АФС: 500 м

Расстояние между маршрутам: ll0 м

Расстояние между центрами фотографирования на маршруте: ll0 м

Допустимое отклонение от оси маршрута: ± l0 м

Допустимое отклонение от запроектированной высоты АФС: ± l5 м

Расстояние срабатывания затвора фотоаппарата от намеченных центров фотографирования вдоль оси маршрута: ± 5 м

Допустимое изменение угла крена БПЛА на маршруте между двумя снимками: 10о

Допустимое изменение угла тангажа БПЛА на маршруте между двумя снимками: 60

Расчет параметров аэрофотосъемки очень важный этап подготовительных работ. Правильно рассчитанные параметры полета позволяют увеличить площадь покрываемую аэрофотосъемкой за один полет и повысить качество материалов аэрофотосъемки.

Для оперативной оценки качества выполнения аэрофотосъемки на нашем предприятии было разработано и внедрено в производство программное обеспечение в виде приложения *.тЬх на базе Маріпіо. Программа позволяет проектировать маршруты согласно рассчитанным параметрам аэрофотосъемки. По полученным данным с борта летательного аппарата в реальном времени строится фактическая траектория полета. В момент прохождения БПЛА над точкой запроектированного центра фотографирования в автоматическом, либо ручном режиме подается команда на срабатывание затвора камеры. По высоте летательного аппарата и его

ориентации в пространстве в момент фотографирования строится условная рамка снимка, по которым можно оперативно оценить покрытие заданной территории аэрофотосъемкой, и, при необходимости, принять решение о повторном прохождении над проблемными участками.

Разработанная методика проектирования аэрофотосъемки с БПЛА позволила существенно сократить время выполнения аэрофотосъемочных работ и повысить качество материалов.

Первая часть статьи «БЕСПИЛОТНЫЕ ЛЕТАТЕЛЬНЫЕ АППАРАТЫ: ПРИМЕНЕНИЕ В ЦЕЛЯХ АЭРОФОТОСЪЕМКИ ДЛЯ КАРТОГРАФИРОВАНИЯ» касалась вопросов общейтеории: были рассмотрены существующие типы БПЛА, приведены пояснения основных терминов, связанных с их использованием, а также дан обзор нескольких моделей БПЛА, успешно применяемых при аэрофотосъемке в картографических целях.

Во второй части статьи будут рассмотрены особенности фотограмметрической обработки беспилотной аэросъемки, даны рекомендации по ее проведению и по установке основного и дополнительного оборудования на борт БПЛА для получения максимальной точности.

А.Ю. Сечин, М.А. Дракин, А.С. Киселева, «Ракурс», Москва, Россия, 2011.

Особенности данных аэросъемки с БПЛА

Аэрофотосъемка с БПЛА принципиально не отличается от съемки с «больших самолетов», но имеет определенные особенности, которые мы далее рассмотрим. Полет БПЛА, как правило, производится с крейсерской скоростью 70-110 км/ч (20-30 м/c) в диапазоне высот 300-1500 м. Для съемки обычно используются неметрические бытовые камеры с размером матрицы 10-20 мегапикселей. Фокусное расстояние камер обычно составляет около 50 мм (в 35 мм эквиваленте), что соответствует размеру пикселя на местности (GSD) от 7 до 35 см.

Часто снимки с БПЛА обрабатываются простыми нестрогими методами (аффинное преобразование снимков на плоскость). В результате, пользователь получает накидные монтажи, которые помимо низкой точности могут содержать разрывы контуров на стыках соседних снимков.

В данной статье при рассмотрении особенностей съемки с БПЛА и составлении рекомендаций по ее проведению мы будем исходить из строгой фотограмметрической обработки данных, в результате которой можно ожидать точность получаемых результатов (как правило, ортофотомозаики) порядка одного GSD. При значениях параметров съемки, указанных выше, результаты соответствуют по точности ортофотопланам масштабов от 1:500 до 1:2000 в зависимости от высоты съемки.

Для строгой фотограмметрической обработки данных аэросъемки и получения максимально точных результатов необходимо, чтобы снимки в одном маршруте имели тройное перекрытие, а перекрытие между снимками соседних маршрутов при площадной съемке составляло не менее 20%. На практике, при съемке с БПЛА эти параметры выдерживаются далеко не всегда. Полет БПЛА не устойчив, на него влияют порывы ветра, турбулентность и другие возмущающие факторы. Если съемку с обычных самолетов планируют с перекрытием вдоль маршрута 60%, а между маршрутами 20-30%, то проектировать съемку с БПЛА следует с перекрытием вдоль маршрутов 80%, а между маршрутами – 40%, чтобы, по возможности, исключить разрывы в фототриангуляционном блоке .

На БПЛА, как правило, устанавливаются цифровые камеры Canon. Это связано с легкостью электронного управления камерами этой фирмы. Использование бытовых камер имеет как преимущества (невысокая стоимость, легкость замены при «жесткой посадке»), так и недостатки.

Основным недостатком является то, что бытовые камеры изначально не откалиброваны – неизвестны их точные фокусные расстояния, главная точка, дисторсия. При этом нелинейные искажения оптики (дисторсия), допустимые при бытовой съемке, могут составлять до нескольких десятков пикселей, что на порядок снижает точность результатов обработки. Однако, такие камеры могут быть откалиброваны в лабораторных условиях, что позволяет получать точности обработки, практически такие же, как и для профессиональных малоформатных фотограмметрических камер.

Предпочтительней устанавливать на такие камеры объективы с фиксированным фокусным расстоянием. При съемке следует выставлять фокусировку на бесконечность и отключать функцию «автофокуса».

Второй недостаток используемых на БПЛА камер относится конкретно к камерам Canon– в них, в отличие от профессиональных фотограмметрических камер, используется щелевой затвор, в результате чего экспозиция разных частей изображения производится в разные моменты времени и соответствует разным положениям носителя. Так, если выдержка при съемке составляет 1/250 c, то при скорости БПЛА в 20 м/с смещение камеры при съемке кадра составляет 8 см, что сравнимо с разрешением съемки на малых высотах и вызывает дополнительную систематическую ошибку в снимке. Такие ошибки могут накапливаться в процессе фотограмметрического сгущения (уравнивании) при съемке протяженных территорий. Для того, чтобы уменьшить влияние этого эффекта и для ликвидации «смаза» снимков, следует осуществлять съемку с БПЛА с наименьшими возможными выдержками (не длиннее 1/250 c, максимальная выдержка зависит от высоты). Частично проблему щелевого затвора могли бы решить камеры с центральным затвором, имеющие сравнимое с камерами Canonкачество объектива и матриц. Тем не менее, чтобы избежать «смаза» выдержки все равно следует ограничивать.

Снимки цифровых камер, как любительских, так и профессиональных, имеют прямоугольную форму. «Выгоднее» располагать камеру так, чтобы длинная сторона снимка располагалась поперек полета – это позволяет снимать большую площадь при той же длине маршрута. Съемку следует производить с максимальным качеством – с наименьшим jpegсжатием или в RAW, если последнее возможно.

Современный уровень развития навигационных средств позволяет производить измерения элементов внешнего ориентирования (ЭВО) непосредственно в процессе съемки. Типичные точности таких измерений достигают единиц сантиметров по пространственным координатам X,Yи Zи 0.005 градуса по углам крена, тангажа и рысканья для самых точных систем ApplanixPOSAV, устанавливаемых на «большие самолеты». Часто этого достаточно, чтобы производить обработку без использования опорных точек. В любом случае, наличие таких данных значительно упрощает обработку и позволяет выполнять некоторые этапы обработки полностью в автоматическом режиме. Современные достижения микроэлектроники позволяют собрать механический (точнее MEMS– электронно-механический) гироскоп в корпусе размером в несколько мм, стоимостью от 250 $. Такие гироскопы не дают точность профессиональных, имеют значительный уход (порядка одного градуса за час) при эксплуатации, но существенно упрощают последующую обработку данных. При типовых поставках Птеро E4, Дозор 50 на борт могут быть установлены такие малогабаритные инерциальные системы - IMU(на Дозор-50 ставится IMUразработки ООО

«Транзаз Телематика») и высокоточные двухдиапазонные GPS (TOPCONeuro160 на Птеро-E4, встроенный ГЛОНАСС/GPS приемник на Дозор-50). Паспортная точность этих GPS приборов составляет 10 мм + 1,5 мм × B(B– удаление до базовой станции в км) в плане и 20 мм + 1,5 мм × Bпо высоте. К сожалению, обычно на борт БПЛА устанавливают болеедешевые GPSприемники и не устанавливают IMU датчики. Данные о центрах проекции снимков в телеметрической информации снимаются через протокол NMEAи имеют в таком случае точность до 20-30 м, а углы тангажа, крена и рысканья вычисляются через вектор скорости GPSизмерений. Точность угла рысканья в такой телеметрической информации невысокая и может превышать 10 градусов, а сами значения содержат систематические ошибки, что усложняет последующую обработку данных.

Если при съемке использовался двухдиапазонный GPSприемник в дифференциальном режиме (или PPPобработка данных GPS), то требуется минимальное число опорных точек для получения наиболее точных результатов обработки, обычно достаточно 1-2 точки на 100 снимков, в ряде случаев обработку можно проводить без опорных точек. В случае, когда нет точных центров проекции, требования к планово-высотному обоснованию стандартные: одна планово-высотная точка на 6-10 базисов съемки.

Специфика фотограмметрической обработки данных аэросъемки с БПЛА

Обработка аэрофотосъемки с БПЛА в цифровых фотограмметрических системах (ЦФС) в целом аналогична обработке аэрофотосъемки с «больших самолетов». Однако особенности данных с борта БПЛА часто не позволяют использовать автоматические процедуры стандартных пакетов – часть операций (например, расстановку связующих точек) приходится производить в ручном режиме. Ниже мы рассмотрим особенности обработки аэросъемки с БПЛА в ЦФС PHOTOMOD5.2. Именно в этой версии PHOTOMOD введены специальные функции для обработки таких данных, существенно упрощающие и автоматизирующие получение конечной продукции.

Как и при обработке других данных, сначала в ЦФС создается проект, в него вводятся снимки и телеметрическая информация. На основании данных о центрах проекции и углах производится создание накидного монтажа, разбивка по маршрутам. Снимки, попавшие на развороты БПЛА, удаляются в ручном режиме. Неточные угловые элементы внешнего ориентирования приводят к достаточно грубому накидному монтажу (Рис. 1):

Рис. 1. Накидной монтаж по телеметрической информации

Автоматический поиск связующих точек в таких случаях затруднен или требует значительного времени работы компьютера. Для уточнения накидного монтажа в таких случаях в ЦФС PHOTOMOD используется т.н. «автоматический накидной монтаж», который уточняет взаимное расположение снимков (Рис. 2).

Рис. 2. Накидной монтаж после автоматического уточнения

Как мы ранее отмечали, съемка с борта БПЛА производится с увеличенными перекрытиями. Нестабильность полета летательного аппарата иногда может привести к очень большим перекрытиям между соседними снимками, что вызывает сложности в стандартных фотограмметрических пакетах.

Рис. 3. «Перепутывание» снимков при маленьком базисе съемки

Разные углы и высоты съемки соседних кадров приводят к увеличению области поиска связующих точек и увеличению числа грубых ошибок по сравнению со стандартными аэрозалетами. После создания уточненного накидного монтажа выполняется процедура автоматического измерения связующих точек. На первых проходах накидной монтаж опять уточняется:

Рис. 4. Накидной монтаж после первых проходов автоматического измерения связующих точек

На следующих проходах производится доизмерение связующих точек. Несколько проходов необходимы в случае, когда телеметрическая информация не содержит всех углов ориентирования, или углы известны с точностью 10-30 градусов. Если же телеметрическая информация содержит угловые элементы ориентирования с точностью в несколько единиц градуса, то достаточно и одного прохода – надежность автоматических измерений в этом случае повышается. Для борьбы с возможными грубыми ошибками при автоматических измерениях в PHOTOMOD5.2 введено понятие т.н. «доверительной группы связующих точек», когда программа ищет наибольшее число связующих точек для стереопар с наименьшим поперечным параллаксом, остальные связующие точки, не попавшие в группу, считаются ошибочными.

После измерения связующих и опорных точек производится процедура уравнивания. В ЦФС PHOTOMODможно использовать начальное приближение для алгоритма уравнивания как по уточненной схеме блока, так и построенное другими методами. Начиная с версии 5.2 для уравнивания аэросъемки с БПЛА мы рекомендуем использовать новый режим – уравнивание 3D. При уравнивании в PHOTOMODи достаточном числе опорных точек можно использовать самокалибровку. Это дает возможность использования некалиброванных камер. Ожидаемая точность выходных результатов при строгой фотограмметрической обработке составляет приблизительно 1-2 GSDв плане и 2-4 GSDпо высоте. После фотограмметрического уравнивания, результаты которого и определяют точность выходных продуктов, производится построение рельефа (ЦМР) в автоматическом режиме. При необходимости, после уравнивания может быть сделана стереовекторизация – отрисовка в ручном режиме зданий, сооружений, мостов, дамб и других объектов. Построенный рельеф используется для ортотрансформирования снимков. На последнем этапе из ортотрансформированных снимков создается бесшовная мозаика – производится расчет линий порезов, выравнивание яркостей, стыковка контурных объектов. Самокалибровку можно включать и при отсутствии опорных точек, правда, в этом случае можно рассчитать только коэффициенты k1, k2 радиальной дисторсии. При использовании камер с щелевым затвором можно дополнительно включить расчет аффинных искажений. В случае стабильности углов ориентирования при съемке такая самокалибровка может повысить точность уравнивания.

Если используется некалиброванная камера и отсутствуют опорные точки, то можно говорить о точности в несколько десятков метров, которая будет определяться точностью

GPSцентров проекций и дисторсией объектива (до нескольких десятков пикселей). В таких случаях можно применять упрощенную автоматизированную последовательность обработки. Бесшовный накидной монтаж указанной точности при этом получается за счет трансформирования исходных снимков в модуле PHOTOMODGeoMosaic.В этом случае используются простейшие методы трансформирования, не учитывающие рельеф местности, а стыковка контуров осуществляется за счет автоматически рассчитываемых связующих точек вдоль автоматически построенных линий порезов.

Примеры фотограмметрической обработки данных аэросъемки с БПЛА

Рассмотрим несколько примеров обработки аэросъемки с БПЛА. Во всех примерах для обработки использовалась ЦФС PHOTOMOD. Отметим, что различными организациями в компанию «Ракурс» для тестирования было передано более 20 блоков аэросъемки с БПЛА. К сожалению, для многих блоков отсутствовали опорные точки и/или съемка была проведена неоткалиброванными камерами. В таких случаях было невозможно оценить точность конечных результатов обработки.

Первый блок, который мы рассмотрим, был снят с борта БПЛА ZALA421-04ф. Данные для исследований были любезно предоставлены ОАО «Газпром космические системы». Блок состоял из 26 маршрутов. Общее число снимков в блоке составило 595. Использовалась предварительно откалиброванная цифровая камера Canon EOS500D. Высота залета над местностью составила около 500 м, размер пиксела на местности приблизительно равен 8 см. На местности были измерены и промаркированы 25 опорных точек, точность координат опорных точек не превышала 10 см. Общий перепад высот местности протяженностью около 3-х километров достаточно большой ~ 70 метров.

Сначала этот же блок аэросъемки был обработан в автоматическом режиме по упрощенной схеме, без уравнивания и использования опорных точек. Привязка осуществлялась по центрам проекции, трансформирование снимков проводилось сразу в модуле GeoMosaicбез учета рельефа. Последующий контроль полученных «псевдо» ортофотопланов по опорным точкам показал расхождения на опорных точках, превышающие 17 м. Такая невысокая точность ортофотплана обусловлена как большим перепадом высот, так и неточностью измерений центров проекций в полете.

Затем блок был подвергнут строгой фотограмметрической обработке. При уравнивании три из измеренных опорных точек считались контрольными. Среднеквадратическая ошибка уравнивания составила по опорным точкам 15 см, 16 см, 12 см, по контрольным точкам 23 см, 29 см и 57 см. Расхождения на связующих точках составили 8 см, 14 см и 69 см. Общий вид блока представлен на следующем рисунке.

Рис. 5. Общий вид «блока 1»

В процессе уравнивания было обнаружено, что координаты центров проекций из телеметрической информации содержат систематическую ошибку, главная из компонент которой составляет 10,5 метра по высоте Z. Среднеквадратические ошибки на центрах проекции после вычитания систематической ошибки составили 84 см, 239 см и 75 см. Существенно большая ошибка по Y(вдоль полета), скорее всего, связана с неточным определением моментов съемки в телеметрии. Большие ошибки по Zна связующих точках возможно связаны с неточной калибровкой камеры и с накопленной ошибкой при съемке камерой с щелевым затвором. Наибольшие ошибки на связующих точках наблюдаются на краях и в углах снимков.

Рис. 6. Величины ошибок на связующих точках

Дальнейшая обработка блока проводилась по стандартной схеме. Был построен рельеф в автоматическом режиме и сделано ортотранформирование с учетом построенного рельефа. Фрагмент построенного ортофото приведен на следующем рисунке. При построении этого фрагмента специально не включалась функция выравнивания яркости для демонстрации совпадения контуров соседних снимков.

Рис. 7. Фрагмент ортофотоплана без выравнивания яркости

В апреле 2011 кафедрой фотограмметрии Московского государственного университета геодезии и картографии (МИИГАиК) были проведены исследования материалов аэрофотосъёмки, полученных с помощью БПЛА Птеро, с целью оценки качества аэросъёмочных работ и фотограмметрической обработки . Съемка выполнялась с высоты около 900 м над средней плоскостью снимаемой местности с борта БПЛА Птеро цифровой фотокомерой CanonEOS5D. Камера была предварительно откалибрована. Для оценки качества материалов использовался фрагмент блока, состоящий из 2-х маршрутов по 6 снимков в каждом. В качестве опорных использовались 14 точек, плановые координаты XYкоторых были сняты с планов масштаба 1:1000, а высота Zопределялась по материалам воздушного лазерного сканирования, выполненного с точностью около 20-30 см. После фотограмметрического уравнивания среднеквадратические погрешности координат на опорных точках составили по X, Yи Zсоответственно 20 см, 21 см и 50 см. Среднеквадратические погрешности координат связующих точек составили 6 см, 6 см, 15 см. Размер пиксела на местности для этого блока GSDсоставляет около 12 см. Общая схема блока показана на следующем рисунке.

Рис. 8. Схема «блока 2» с опорными и связующими точками

Вопросы метрологического обеспечения

В целом, использование БПЛА для аэросъемки и для получения материалов картографической точности показывает экономическую эффективность и является оперативным. Для широкого внедрения такой аэросъемки требуется координация усилий как производителей БПЛА, так и пользователей их эксплуатирующих, а также разработчиков цифровых фотограмметрических систем.

Одним из сдерживающих факторов внедрения БПЛА для решения перечисленных выше задач является отсутствие у большинства организаций практического опыта их использования, а также отсутствие теоретически обоснованных рекомендаций по выбору съемочной аппаратуры для БПЛА и параметров выполняемой с их помощью аэрофотосъемки.

Отметим здесь интересный проект МИИГАиК – с целью отработки и исследования технологий мониторинга и картографирования местности по материалам беспилотной аэрофотосъемки, начаты работы по созданию специализированного исследовательского полигона. Этот полигон, площадью около 50 кв. км, создается в Заокском районе Тульской области, на базе учебного геополигона МИИГАиК, расположенного в 110 км от Москвы.

Территория полигона представляет собой уникальное многообразие картографических объектов. На этой территории расположены разнообразные населенные пункты: поселок городского типа, деревни, дачные и коттеджные поселки; дорожная сеть в виде железных, шоссейных, проселочных и полевых дорог; линии электропередачи различного напряжения; трубопроводы. На территории полигона имеются лесные массивы, различные гидрографические объекты, многообразные формы рельефа, сельскохозяйственные угодья и производственные объекты.

С целью обеспечения отработки и исследования технологий, основанных на применении БПЛА, на территории полигона начаты работы по созданию высокоточной сети планово-высотных опознаков (в виде естественных контуров местности и маркировочных знаков); ведется топографическая наземная съемка характерных участков местности в масштабе 1: 500 и 1: 2000. На эту же территорию по материалам аэрофотосъемки и космическим снимкам высокого разрешения созданы ортофотопланы и цифровые модели местности. По мере поступления новых съемочных материалов эти работы предполагается выполнять в дежурном режиме.

Для оценки изобразительных свойств снимков, полученных с помощь БПЛА, на полигоне будут развернуты радиальные миры.

Первые испытания планируется провести в середине июля 2011 г. Планируется провести тестовую аэрофотосъемку территории полигона в различных масштабах с помощью отечественного БПЛА «ПТЕРО» с целью отработки и исследования фотограмметрической технологии создания карт различного масштаба по полученным материалам аэрофотосъемки. Фотограмметрическую обработку полученных снимков предполагается выполнить на цифровой фотограмметрической системе PHOTOMOD. В сентябре предполагается провести испытания БПЛА «Х100» бельгийской фирмы Gatewing и БПЛА «МИИГАиК Х8», разработанного в МИИГАиК.

Созданием полигона и проведением на нем испытаний БПЛА и технологий, основанных на их использовании, МИИГАиК намерен помочь потенциальным пользователям освоить и внедрить новые технологии, а разработчикам летательных аппаратов и съемочных систем адаптировать их к решению актуальных задач производства.

Использование БПЛА в качестве аэросъемочной платформы имеет большие перспективы при съемке небольших по протяженности площадных объектов и при съемке линейных объектов. Данные с БПЛА позволяют получать качественные картографические материалы (пространственные данные) при следующих условиях:

· выполнении определенных (вполне посильных) требований к съемочной аппаратуре и процессу съемки (гарантия достаточности перекрытий);

· строгой фотограмметрической обработке. Точность при этом возрастает в десятки раз и может составлять около GSD, как и для обычной аэросъемки и космических снимков.

Наши рекомендации для получения максимальной точности результатов съемки предназначены как для пользователей, эксплуатирующих БПЛА, так и для конструкторов, устанавливающих оборудование на беспилотники, и состоят в следующем.

· Использовать на БПЛА калиброванные камеры.

· Производить съемку с выдержкой не длиннее 1/250с.

· Использовать объективы с фиксированным фокусным расстоянием. Если это невозможно, следует фиксировать увеличение (Zoom). Съемка должна производиться с фокусировкой на бесконечность и с отключенным режимом автофокусировки.

· Проектировать съемку с увеличенными перекрытиями (80% вдоль, 40% поперек маршрута).

· Желательно использовать камеры с центральным затвором.

· Желательно использовать двухдиапазонные GPS приемники на борту и дифференциальный режим измерений.

· Желательно использование на борту IMU, пусть и не имеющего высокой точности.

Благодарности

Благодарим компании: «Беспилотные системы ЗАЛА АЭРО», ОАО «Газпром космические системы», «АФМ-Серверс», ООО «Геометр-Центр», НПИ и КЦ «Земинформ», ЗАО «Транзас», ЗАО «Лимб» за помощь в подготовке материала, предоставление данных и полезные обсуждения.

Литература

1. Чибуничев А.Г., Михайлов А.П., Говоров А.В. Калибровка цифровых фотокамер: Вторая научно-практическая конференция РОФДЗ. Тезисы докладов. М., 2001 г. с38-39.

2. Скубиев С.И., Научно-производственный институт земельно-информационных технологий Государственного университета по землеустройству «Земинформ» (Россия), Использование беспилотных летательных аппаратов для целей картографии. Тезисы XЮбилейной международной научно-технической конференции «От снимка к карте: цифровые фотограмметрические технологии». Гаета, Италия, 2010.

3. Результаты полевых исследований БПЛА «Птеро»

Первая часть статьи «БЕСПИЛОТНЫЕ ЛЕТАТЕЛЬНЫЕ АППАРАТЫ: ПРИМЕНЕНИЕ В ЦЕЛЯХ АЭРОФОТОСЪЕМКИ ДЛЯ КАРТОГРАФИРОВАНИЯ» касалась вопросов общейтеории: были рассмотрены существующие типы БПЛА, приведены пояснения основных терминов, связанных с их использованием, а также дан обзор нескольких моделей БПЛА, успешно применяемых при аэрофотосъемке в картографических целях.

Во второй части статьи будут рассмотрены особенности фотограмметрической обработки беспилотной аэросъемки, даны рекомендации по ее проведению и по установке основного и дополнительного оборудования на борт БПЛА для получения максимальной точности.

А.Ю. Сечин, М.А. Дракин, А.С. Киселева, «Ракурс», Москва, Россия, 2011.

Особенности данных аэросъемки с БПЛА

Принципиально не отличается от съемки с «больших самолетов», но имеет определенные особенности, которые мы далее рассмотрим. Полет БПЛА, как правило, производится с крейсерской скоростью 70-110 км/ч (20-30 м/c) в диапазоне высот 300-1500 м. Для съемки обычно используются неметрические бытовые камеры с размером матрицы 10-20 мегапикселей. Фокусное расстояние камер обычно составляет около 50 мм (в 35 мм эквиваленте), что соответствует размеру пикселя на местности (GSD) от 7 до 35 см.

Часто снимки с БПЛА обрабатываются простыми нестрогими методами (аффинное преобразование снимков на плоскость). В результате, пользователь получает накидные монтажи, которые помимо низкой точности могут содержать разрывы контуров на стыках соседних снимков.

В данной статье при рассмотрении особенностей съемки с БПЛА и составлении рекомендаций по ее проведению мы будем исходить из строгой фотограмметрической обработки данных, в результате которой можно ожидать точность получаемых результатов (как правило, ортофотомозаики) порядка одного GSD. При значениях параметров съемки, указанных выше, результаты соответствуют по точности ортофотопланам масштабов от 1:500 до 1:2000 в зависимости от высоты съемки.

Для строгой фотограмметрической обработки данных аэросъемки и получения максимально точных результатов необходимо, чтобы снимки в одном маршруте имели тройное перекрытие, а перекрытие между снимками соседних маршрутов при площадной съемке составляло не менее 20%. На практике, при съемке с БПЛА эти параметры выдерживаются далеко не всегда. Полет БПЛА не устойчив, на него влияют порывы ветра, турбулентность и другие возмущающие факторы. Если съемку с обычных самолетов планируют с перекрытием вдоль маршрута 60%, а между маршрутами 20-30%, то проектировать съемку с БПЛА следует с перекрытием вдоль маршрутов 80%, а между маршрутами – 40%, чтобы, по возможности, исключить разрывы в фототриангуляционном блоке .

На БПЛА, как правило, устанавливаются цифровые камеры Canon. Это связано с легкостью электронного управления камерами этой фирмы. Использование бытовых камер имеет как преимущества (невысокая стоимость, легкость замены при «жесткой посадке»), так и недостатки.

Основным недостатком является то, что бытовые камеры изначально не откалиброваны – неизвестны их точные фокусные расстояния, главная точка, дисторсия. При этом нелинейные искажения оптики (дисторсия), допустимые при бытовой съемке, могут составлять до нескольких десятков пикселей, что на порядок снижает точность результатов обработки. Однако, такие камеры могут быть откалиброваны в лабораторных условиях, что позволяет получать точности обработки, практически такие же, как и для профессиональных малоформатных фотограмметрических камер.

Предпочтительней устанавливать на такие камеры объективы с фиксированным фокусным расстоянием. При съемке следует выставлять фокусировку на бесконечность и отключать функцию «автофокуса».

Второй недостаток используемых на БПЛА камер относится конкретно к камерам Canon– в них, в отличие от профессиональных фотограмметрических камер, используется щелевой затвор, в результате чего экспозиция разных частей изображения производится в разные моменты времени и соответствует разным положениям носителя. Так, если выдержка при съемке составляет 1/250 c, то при скорости БПЛА в 20 м/с смещение камеры при съемке кадра составляет 8 см, что сравнимо с разрешением съемки на малых высотах и вызывает дополнительную систематическую ошибку в снимке. Такие ошибки могут накапливаться в процессе фотограмметрического сгущения (уравнивании) при съемке протяженных территорий. Для того, чтобы уменьшить влияние этого эффекта и для ликвидации «смаза» снимков, следует осуществлять съемку с БПЛА с наименьшими возможными выдержками (не длиннее 1/250 c, максимальная выдержка зависит от высоты). Частично проблему щелевого затвора могли бы решить камеры с центральным затвором, имеющие сравнимое с камерами Canonкачество объектива и матриц. Тем не менее, чтобы избежать «смаза» выдержки все равно следует ограничивать.

Снимки цифровых камер, как любительских, так и профессиональных, имеют прямоугольную форму. «Выгоднее» располагать камеру так, чтобы длинная сторона снимка располагалась поперек полета – это позволяет снимать большую площадь при той же длине маршрута. Съемку следует производить с максимальным качеством – с наименьшим jpegсжатием или в RAW, если последнее возможно.

Современный уровень развития навигационных средств позволяет производить измерения элементов внешнего ориентирования (ЭВО) непосредственно в процессе съемки. Типичные точности таких измерений достигают единиц сантиметров по пространственным координатам X,Yи Zи 0.005 градуса по углам крена, тангажа и рысканья для самых точных систем ApplanixPOSAV, устанавливаемых на «большие самолеты». Часто этого достаточно, чтобы производить обработку без использования опорных точек. В любом случае, наличие таких данных значительно упрощает обработку и позволяет выполнять некоторые этапы обработки полностью в автоматическом режиме. Современные достижения микроэлектроники позволяют собрать механический (точнее MEMS– электронно-механический) гироскоп в корпусе размером в несколько мм, стоимостью от 250 $. Такие гироскопы не дают точность профессиональных, имеют значительный уход (порядка одного градуса за час) при эксплуатации, но существенно упрощают последующую обработку данных. При типовых поставках , Дозор 50 на борт могут быть установлены такие малогабаритные инерциальные системы - IMU(на Дозор-50 ставится IMUразработки ООО «Транзаз Телематика») и высокоточные двухдиапазонные GPS (TOPCONeuro160 на Птеро-E4, встроенный ГЛОНАСС/GPS приемник на Дозор-50). Паспортная точность этих GPS приборов составляет 10 мм + 1,5 мм × B (B – удаление до базовой станции в км) в плане и 20 мм + 1,5 мм × B по высоте. К сожалению, обычно на борт БПЛА устанавливают болеедешевые GPSприемники и не устанавливают IMU датчики. Данные о центрах проекции снимков в телеметрической информации снимаются через протокол NMEAи имеют в таком случае точность до 20-30 м, а углы тангажа, крена и рысканья вычисляются через вектор скорости GPSизмерений. Точность угла рысканья в такой телеметрической информации невысокая и может превышать 10 градусов, а сами значения содержат систематические ошибки, что усложняет последующую обработку данных.

Если при съемке использовался двухдиапазонный GPSприемник в дифференциальном режиме (или PPPобработка данных GPS), то требуется минимальное число опорных точек для получения наиболее точных результатов обработки, обычно достаточно 1-2 точки на 100 снимков, в ряде случаев обработку можно проводить без опорных точек. В случае, когда нет точных центров проекции, требования к планово-высотному обоснованию стандартные: одна планово-высотная точка на 6-10 базисов съемки.

Специфика фотограмметрической обработки данных аэросъемки с БПЛА

Обработка аэрофотосъемки с БПЛА в цифровых фотограмметрических системах (ЦФС) в целом аналогична обработке аэрофотосъемки с «больших самолетов». Однако особенности данных с борта БПЛА часто не позволяют использовать автоматические процедуры стандартных пакетов – часть операций (например, расстановку связующих точек) приходится производить в ручном режиме. Ниже мы рассмотрим особенности обработки аэросъемки с БПЛА в ЦФС PHOTOMOD5.2. Именно в этой версии PHOTOMOD введены специальные функции для обработки таких данных, существенно упрощающие и автоматизирующие получение конечной продукции.

Как и при обработке других данных, сначала в ЦФС создается проект, в него вводятся снимки и телеметрическая информация. На основании данных о центрах проекции и углах производится создание накидного монтажа, разбивка по маршрутам. Снимки, попавшие на развороты БПЛА, удаляются в ручном режиме. Неточные угловые элементы внешнего ориентирования приводят к достаточно грубому накидному монтажу (Рис. 1):

Рис. 1. Накидной монтаж по телеметрической информации

Автоматический поиск связующих точек в таких случаях затруднен или требует значительного времени работы компьютера. Для уточнения накидного монтажа в таких случаях в ЦФС PHOTOMOD используется т.н. «автоматический накидной монтаж», который уточняет взаимное расположение снимков (Рис. 2).

Рис. 2. Накидной монтаж после автоматического уточнения

Как мы ранее отмечали, съемка с борта БПЛА производится с увеличенными перекрытиями. Нестабильность полета летательного аппарата иногда может привести к очень большим перекрытиям между соседними снимками, что вызывает сложности в стандартных фотограмметрических пакетах.

Рис. 3. «Перепутывание» снимков при маленьком базисе съемки

Разные углы и высоты съемки соседних кадров приводят к увеличению области поиска связующих точек и увеличению числа грубых ошибок по сравнению со стандартными аэрозалетами. После создания уточненного накидного монтажа выполняется процедура автоматического измерения связующих точек. На первых проходах накидной монтаж опять уточняется:

Рис. 4. Накидной монтаж после первых проходов автоматического измерения связующих точек

На следующих проходах производится доизмерение связующих точек. Несколько проходов необходимы в случае, когда телеметрическая информация не содержит всех углов ориентирования, или углы известны с точностью 10-30 градусов. Если же телеметрическая информация содержит угловые элементы ориентирования с точностью в несколько единиц градуса, то достаточно и одного прохода – надежность автоматических измерений в этом случае повышается. Для борьбы с возможными грубыми ошибками при автоматических измерениях в PHOTOMOD5.2 введено понятие т.н. «доверительной группы связующих точек», когда программа ищет наибольшее число связующих точек для стереопар с наименьшим поперечным параллаксом, остальные связующие точки, не попавшие в группу, считаются ошибочными.

После измерения связующих и опорных точек производится процедура уравнивания. В ЦФС PHOTOMODможно использовать начальное приближение для алгоритма уравнивания как по уточненной схеме блока, так и построенное другими методами. Начиная с версии 5.2 для уравнивания аэросъемки с БПЛА мы рекомендуем использовать новый режим – уравнивание 3D. При уравнивании в PHOTOMODи достаточном числе опорных точек можно использовать самокалибровку. Это дает возможность использования некалиброванных камер. Ожидаемая точность выходных результатов при строгой фотограмметрической обработке составляет приблизительно 1-2 GSDв плане и 2-4 GSDпо высоте. После фотограмметрического уравнивания, результаты которого и определяют точность выходных продуктов, производится построение рельефа (ЦМР) в автоматическом режиме. При необходимости, после уравнивания может быть сделана стереовекторизация – отрисовка в ручном режиме зданий, сооружений, мостов, дамб и других объектов. Построенный рельеф используется для ортотрансформирования снимков. На последнем этапе из ортотрансформированных снимков создается бесшовная мозаика – производится расчет линий порезов, выравнивание яркостей, стыковка контурных объектов. Самокалибровку можно включать и при отсутствии опорных точек, правда, в этом случае можно рассчитать только коэффициенты k 1, k 2 радиальной дисторсии. При использовании камер с щелевым затвором можно дополнительно включить расчет аффинных искажений. В случае стабильности углов ориентирования при съемке такая самокалибровка может повысить точность уравнивания.

Если используется некалиброванная камера и отсутствуют опорные точки, то можно говорить о точности в несколько десятков метров, которая будет определяться точностью

GPSцентров проекций и дисторсией объектива (до нескольких десятков пикселей). В таких случаях можно применять упрощенную автоматизированную последовательность обработки. Бесшовный накидной монтаж указанной точности при этом получается за счет трансформирования исходных снимков в модуле PHOTOMODGeoMosaic.В этом случае используются простейшие методы трансформирования, не учитывающие рельеф местности, а стыковка контуров осуществляется за счет автоматически рассчитываемых связующих точек вдоль автоматически построенных линий порезов.

Примеры фотограмметрической обработки данных аэросъемки с БПЛА

Рассмотрим несколько примеров . Во всех примерах для обработки использовалась ЦФС PHOTOMOD. Отметим, что различными организациями в компанию «Ракурс» для тестирования было передано более 20 блоков аэросъемки с БПЛА. К сожалению, для многих блоков отсутствовали опорные точки и/или съемка была проведена неоткалиброванными камерами. В таких случаях было невозможно оценить точность конечных результатов обработки.

Первый блок, который мы рассмотрим, был снят с борта БПЛА ZALA421-04ф. Данные для исследований были любезно предоставлены ОАО «Газпром космические системы». Блок состоял из 26 маршрутов. Общее число снимков в блоке составило 595. Использовалась предварительно откалиброванная цифровая камера Canon EOS500D. Высота залета над местностью составила около 500 м, размер пиксела на местности приблизительно равен 8 см. На местности были измерены и промаркированы 25 опорных точек, точность координат опорных точек не превышала 10 см. Общий перепад высот местности протяженностью около 3-х километров достаточно большой ~ 70 метров.

Сначала этот же блок аэросъемки был обработан в автоматическом режиме по упрощенной схеме, без уравнивания и использования опорных точек. Привязка осуществлялась по центрам проекции, трансформирование снимков проводилось сразу в модуле GeoMosaicбез учета рельефа. Последующий контроль полученных «псевдо» ортофотопланов по опорным точкам показал расхождения на опорных точках, превышающие 17 м. Такая невысокая точность ортофотплана обусловлена как большим перепадом высот, так и неточностью измерений центров проекций в полете.

Затем блок был подвергнут строгой фотограмметрической обработке. При уравнивании три из измеренных опорных точек считались контрольными. Среднеквадратическая ошибка уравнивания составила по опорным точкам 15 см, 16 см, 12 см, по контрольным точкам 23 см, 29 см и 57 см. Расхождения на связующих точках составили 8 см, 14 см и 69 см. Общий вид блока представлен на следующем рисунке.

Рис. 5. Общий вид «блока 1»

В процессе уравнивания было обнаружено, что координаты центров проекций из телеметрической информации содержат систематическую ошибку, главная из компонент которой составляет 10,5 метра по высоте Z. Среднеквадратические ошибки на центрах проекции после вычитания систематической ошибки составили 84 см, 239 см и 75 см. Существенно большая ошибка по Y(вдоль полета), скорее всего, связана с неточным определением моментов съемки в телеметрии. Большие ошибки по Zна связующих точках возможно связаны с неточной калибровкой камеры и с накопленной ошибкой при съемке камерой с щелевым затвором. Наибольшие ошибки на связующих точках наблюдаются на краях и в углах снимков.

Рис. 6. Величины ошибок на связующих точках

Дальнейшая обработка блока проводилась по стандартной схеме. Был построен рельеф в автоматическом режиме и сделано ортотранформирование с учетом построенного рельефа. Фрагмент построенного ортофото приведен на следующем рисунке. При построении этого фрагмента специально не включалась функция выравнивания яркости для демонстрации совпадения контуров соседних снимков.

Рис. 7. Фрагмент ортофотоплана без выравнивания яркости

В апреле 2011 кафедрой фотограмметрии Московского государственного университета геодезии и картографии (МИИГАиК) были проведены исследования материалов аэрофотосъёмки, полученных с помощью БПЛА Птеро, с целью оценки качества аэросъёмочных работ и фотограмметрической обработки . Съемка выполнялась с высоты около 900 м над средней плоскостью снимаемой местности с борта БПЛА Птеро цифровой фотокомерой CanonEOS5D. Камера была предварительно откалибрована. Для оценки качества материалов использовался фрагмент блока, состоящий из 2-х маршрутов по 6 снимков в каждом. В качестве опорных использовались 14 точек, плановые координаты XYкоторых были сняты с планов масштаба 1:1000, а высота Zопределялась по материалам воздушного лазерного сканирования, выполненного с точностью около 20-30 см. После фотограмметрического уравнивания среднеквадратические погрешности координат на опорных точках составили по X, Yи Zсоответственно 20 см, 21 см и 50 см. Среднеквадратические погрешности координат связующих точек составили 6 см, 6 см, 15 см. Размер пиксела на местности для этого блока GSDсоставляет около 12 см. Общая схема блока показана на следующем рисунке.

Рис. 8. Схема «блока 2» с опорными и связующими точками

Вопросы метрологического обеспечения

В целом, использование БПЛА для аэросъемки и для получения материалов картографической точности показывает экономическую эффективность и является оперативным. Для широкого внедрения такой аэросъемки требуется координация усилий как производителей БПЛА, так и пользователей их эксплуатирующих, а также разработчиков цифровых фотограмметрических систем.

Одним из сдерживающих факторов внедрения БПЛА для решения перечисленных выше задач является отсутствие у большинства организаций практического опыта их использования, а также отсутствие теоретически обоснованных рекомендаций по выбору съемочной аппаратуры для БПЛА и параметров выполняемой с их помощью аэрофотосъемки.

Отметим здесь интересный проект МИИГАиК – с целью отработки и исследования технологий мониторинга и картографирования местности по материалам беспилотной аэрофотосъемки, начаты работы по созданию специализированного исследовательского полигона. Этот полигон, площадью около 50 кв. км, создается в Заокском районе Тульской области, на базе учебного геополигона МИИГАиК, расположенного в 110 км от Москвы.

Территория полигона представляет собой уникальное многообразие картографических объектов. На этой территории расположены разнообразные населенные пункты: поселок городского типа, деревни, дачные и коттеджные поселки; дорожная сеть в виде железных, шоссейных, проселочных и полевых дорог; линии электропередачи различного напряжения; трубопроводы. На территории полигона имеются лесные массивы, различные гидрографические объекты, многообразные формы рельефа, сельскохозяйственные угодья и производственные объекты.

С целью обеспечения отработки и исследования технологий, основанных на применении БПЛА, на территории полигона начаты работы по созданию высокоточной сети планово-высотных опознаков (в виде естественных контуров местности и маркировочных знаков); ведется топографическая наземная съемка характерных участков местности в масштабе 1: 500 и 1: 2000. На эту же территорию по материалам аэрофотосъемки и космическим снимкам высокого разрешения созданы ортофотопланы и цифровые модели местности. По мере поступления новых съемочных материалов эти работы предполагается выполнять в дежурном режиме.

Для оценки изобразительных свойств снимков, полученных с помощь БПЛА, на полигоне будут развернуты радиальные миры.

Первые испытания планируется провести в середине июля 2011 г. Планируется провести тестовую аэрофотосъемку территории полигона в различных масштабах с помощью отечественного БПЛА «ПТЕРО» с целью отработки и исследования фотограмметрической технологии создания карт различного масштаба по полученным материалам аэрофотосъемки. Фотограмметрическую обработку полученных снимков предполагается выполнить на цифровой фотограмметрической системе PHOTOMOD. В сентябре предполагается провести испытания и БПЛА «МИИГАиК Х8», разработанного в МИИГАиК.

Созданием полигона и проведением на нем испытаний БПЛА и технологий, основанных на их использовании, МИИГАиК намерен помочь потенциальным пользователям освоить и внедрить новые технологии, а разработчикам летательных аппаратов и съемочных систем адаптировать их к решению актуальных задач производства.

Выводы

Использование БПЛА в качестве аэросъемочной платформы имеет большие перспективы при съемке небольших по протяженности площадных объектов и при съемке линейных объектов. Данные с БПЛА позволяют получать качественные картографические материалы (пространственные данные) при следующих условиях:

    выполнении определенных (вполне посильных) требований к съемочной аппаратуре и процессу съемки (гарантия достаточности перекрытий);

    строгой фотограмметрической обработке. Точность при этом возрастает в десятки раз и может составлять около GSD, как и для обычной аэросъемки и космических снимков.

Наши рекомендации для получения максимальной точности результатов съемки предназначены как для пользователей, эксплуатирующих БПЛА, так и для конструкторов, устанавливающих оборудование на беспилотники, и состоят в следующем.

    Использовать на БПЛА калиброванные камеры.

    Производить съемку с выдержкой не длиннее 1/250с.

    Использовать объективы с фиксированным фокусным расстоянием. Если это невозможно, следует фиксировать увеличение (Zoom). Съемка должна производиться с фокусировкой на бесконечность и с отключенным режимом автофокусировки.

    Проектировать съемку с увеличенными перекрытиями (80% вдоль, 40% поперек маршрута).

    Желательно использовать камеры с центральным затвором.

    Желательно использовать двухдиапазонные GPS приемники на борту и дифференциальный режим измерений.

    Желательно использование на борту IMU, пусть и не имеющего высокой точности.

Благодарности

Благодарим компании: «Беспилотные системы ЗАЛА АЭРО», ОАО «Газпром космические системы», «АФМ-Серверс», ООО «Геометр-Центр», НПИ и КЦ «Земинформ», ЗАО «Транзас», ЗАО «Лимб» за помощь в подготовке материала, предоставление данных и полезные обсуждения.

Литература

    Чибуничев А.Г., Михайлов А.П., Говоров А.В. Калибровка цифровых фотокамер: Вторая научно-практическая конференция РОФДЗ. Тезисы докладов. М., 2001 г. с38-39.

    Скубиев С.И., Научно-производственный институт земельно-информационных технологий Государственного университета по землеустройству «Земинформ» (Россия), Использование беспилотных летательных аппаратов для целей картографии. Тезисы XЮбилейной международной научно-технической конференции «От снимка к карте: цифровые фотограмметрические технологии». Гаета, Италия, 2010.

    Результаты полевых исследований БПЛА «Птеро»

Приводим приблизительные расценки на аэросъёмочные работы, осуществляемые при помощи БПЛА.
Расценки могут меняться в зависимости от ПЛОЩАДИ СЪЁМКИ , ТРАНСПОРТНЫХ РАСХОДОВ , ВРЕМЕНИ ГОДА (наличия листвы/снега). Наилучшее соотношение цены/качества/скорости получается в промежутке между таянием снега и появлением листвы на деревьях.
Минимальная площадь съёмки одного объекта 6 км 2 , если есть несколько объектов с расстояниями между ними до 30 км, то мин объём 4 км 2 .

Цена аэрофотосъёмки БПЛА

Цены на аэрофотосъёмку БПЛА приведены на 1 км 2 .
1. Ортофотоплан в WGS84
Масштаб 1:500 (4 см./пикс) – 35 000 рублей 1 км 2 .
Масштаб 1:1000 (7 см./пикс) – 22 000 рублей км 2 .
Масштаб 1:2000 (10 см./пикс) – 17 000 рублей км 2 .
Масштаб 1:5000 (15 см./пикс) – 12 000 рублей км 2 .

2. Создание ортофотоплана с привязкой к местным системам координат:
Масштаб 1:500 + 10 000 рублей км 2 .
Масштаб 1:1000 + 6 000 рублей. км 2 .
Масштаб 1:2000 + 4 500 рублей км 2 .
Масштаб 1:5000 + 3 000 рублей км 2 .

3. Построение ЦМР или горизонталей:
Сечение 0,5 м + 12 000 рублей за км 2 .
Сечение 1 м + 8 000 рублей за км 2 .
Сечение 2 м + 5 000 рублей за км 2 .

4. Рассекречивание материалов ДЗЗ – 40 000 рублей за объект.
5. Отрисовка топографического плана по результатам съёмки БПЛА: оценивается индивидуально – от 5 000 рублей за км 2 .
Таким образом, стоимость 1 км 2 плана масштаба 1:2 000 при выходе на бумагу будет стоить 34 500, т.е. по 345 р/га – такую цену невозможно получить никаким другим способом!

Для больших площадей съёмки в более крупных масштабах (до 1:500) нами разработан способ комбинированных работ, включающих как съемку при помощи БПЛА, так и тахеометрию с проложением магистрального хода и подсъёмкой основных элементов местности.

Качество не раз проверялось инструментально с земли, в том числе силами заказчиков.

Преимущества технологии аэрофотосъёмки беспилотными летательными аппаратами.

Технология аэрофотосъёмки беспилотными летательными аппаратами развивается уже много лет но только в последнее время подошла по своим точностным характеристикам к классическим способам геодезической съемки и на уровне масштабного ряда от 1:500 и мельче сравнялась с ними. На данный момент АФС БПЛА находится на переднем крае развития геодезических технологий, вытесняя в обширном сегменте такие методы как тахеометрия, спутниковое позиционирование в режимах RTK, пилотируемая АФС, воздушное лазерное сканирование, делая их неконкурентоспособными как по стоимости, так и по срокам.
При больших объемах, слабо залесенной и слабо застроенной площади аэрофотосъемка БПЛА делает нерентабельными тахеометрическую и GPS съемку уже при площади в 70 га. В то же время воздушное лазерное сканирование и пилотируемая аэрофотосъёмка могут конкурировать с БПЛА лишь при объемах от 50 кв. км площадных объектов или от 200 пг км линейных. Итак, на данный момент развития технологий АФС БПЛА достаточно вольготно себе чувствует на открытых территориях в диапазоне объема работ от 0,7 до 50 кв. км.

К недостаткам АФС БПЛА стоит отнести ее метеозависимость и сезонозависимость (снежный покров или наличие очень густой растительности чаще всего препятствует получению достаточного для построения инженерно-топографического плана материала). Следует отметить, что эти факторы абсолютно в той же мере препятствует и другим способам съёмки. В масштабном ряду съёмка ограничена диапазоном от 1:5000 до 1:1000 (мельче 1:5000 целесообразнее использовать космические снимки, крупнее 1:1000 необходимы комбинированные с наземными средствами методы).
Растительность также может влиять на результат. В нашей практике мы сталкивались с бамбуковыми зарослями на южных Курильских островах, которые оказались не просвечиваемы практически на 100%, то же касается тростника заболоченных участков Юга России (например, дельта Волги) и, по всей видимости, тропической растительности юга Черноморского побережья. Лесные массивы средней и северной части страны, а также Сибири и Дальнего Востока, как правило, не являются помехой для АФС БПЛА.
Плотная городская застройка может накладывать ограничения на сам процесс полёта, а также скрывать за своими структурами множество элементов, не видимых сверху. Тем не менее, для таких объектов как СНТ, АФС БПЛА становится незаменимым решением ввиду ограничения доступа на каждый участок, значительно ускоряя процесс съёмки.

Применение аэрофотосъёмки БПЛА

Кроме топографической съёмки беспилотные технологии применяются нами и для различных форм мониторинга, объектами которого могут выступать несанкционированные свалки твердых бытовых отходов, линейные объекты - ЛЭП, трубопроводы, транспортная инфраструктура. Также БПЛА решает вопросы определения объемов земляных масс и их динамики при разработках месторождений открытым способом, карьеров. По сравнению с космическим мониторингов БПЛА дает несоизмеримо более актуальную информацию - при заказе космического снимка на конкретную территорию вы можете либо воспользоваться снимком их архива 1-3 месячной, а то и годовой давности или наоборот, ждать долгое время подходящей телеметрии спутника и своей очереди на съёмку вашей территории – данные с беспилотника вы можете получить в работу через несколько часов.
Аграрный сектор в последнее время становится одним из основных потребителей технологии. Агрохолдинги и крупные сельскохозяйственные объединения, обладающие большими площадями незастроенной и открытой местности, заинтересованы не только в производстве инженерно-геодезических изысканий для реконструкции и нового строительства, но и в мониторинге, инвентаризации сельхозугодий, оценки всхожести культур, прогнозе урожайности, мониторинге эрозионных процессов. Нами используется нормализованный вегетационный индекс (NDVI), позволяющий на основе разности ближней инфракрасной и красной областях спектра определять фотосинтезирующую активность биомассы.

Пространственное разрешение аэрофотоснимков с БПЛА

Сравнение снимка Google и аэрофотоснимка с БПЛА